Tryptophan 2,3-dioxygenase-like Activity of Monoclonal Antibody Anchored by a Manganese(III) Porphyrin Complex

Katsutoshi OHKUBO,* Hitoshi ISHIDA, Takashi SAGAWA, Kenji URABE,
Kei-ichi SERI, and Mamoru SUGA
Department of Applied Chemistry, Faculty of Engineering,
Kumamoto University, Kurokami, Kumamoto 860

Anchoring of a manganese(III) porphyrin complex to monoclonal (or polyclonal) antibody performed with the p-nitrophenylamino moiety of the complex, and this antibody anchored by the metal complex showed efficient catalytic activity and stereoselective ability for tryptophan 2,3-dioxygenase like dioxygenolyses of N-acetyl- L(and/or D)-tryptophan methyl esters in THF/H $_2$ O (pH 8.0) under atmospheric O $_2$ at 25 °C.

Catalytic nature of antibodies has recently received considerable attention as a semisynthetic enzyme, and their catalytic efficiencies are directly relied on the molecular structures of their haptens. In most cases, haptens have been designed as transition state analogs, $^{1)}$ active site-substrate complex analogs, $^{2)}$ or active site analogs. $^{3)}$ This is the first report on the catalytic and stereoselective ability of monoclonal (or polyclonal) antibodies (IgG) anchored by manganese(III) porphyrin possessing a p-nitrophenylamino moiety in tryptophan 2,3-dioxygenase-like dioxygenolyses of N-acetyl- L(and/or D)-tryptophan methyl esters (Eq. 1).

$$L - \bigvee_{\substack{N \\ N \\ H}} O.CH_3 + O_2 \xrightarrow{k^L} O.CH_3 + O_2 \xrightarrow{k^D (\neq k^L)} NHCOCH_3$$

$$D - \bigvee_{\substack{N \\ N \\ H}} O.CH_3 + O_2 \xrightarrow{k^D (\neq k^L)} 2$$

$$1$$

In regard to the antibodies anchored by manganese(III) porphyrin including the p-nitrophenylamino moiety as a binding site toward

antibodies, they were produced by immunizing a mouse with a hapten of adipic acid p-nitroanilide which was attached to the carrier protein, bovine serum albumin (BSA). Polyclonal and monoclonal antibodies were obtained and purified in the usual way, 4) and the affinity of these antibodies for the BSA-p-nitroanilide conjugate were examined by an enzyme-linked immunosorbent assay (ELIZA). Manganese(III) porphyrin attached by the p-nitrophenylamino moiety (3) was synthesized as follows (Scheme 1): N,N'-dimethylformamide solution (4 cm 3) containing tetra(p-

$$\begin{array}{c} \text{HCI-NH}(\text{CH}_2)_5\text{CONH} & & & \\ \hline \\ \text{NO}_2 & & \\ \hline \\ \text{DCC} \\ \\ O_2\text{N} & & \\ \hline \\ \text{NHCO}(\text{CH}_2)_5\text{NH-Mn}(\text{III})\text{CITCPP} \\ \\ \hline \\ \text{3} \\ \\ \text{antibody-O}_2\text{N} & & \\ \hline \\ \text{NHCO}(\text{CH}_2)_5\text{NH-Mn}(\text{III})\text{CITCPP} \\ \\ \text{(anchored-type antibody catalyst)} \\ \end{array}$$

4

Scheme 1.

carboxyphenyl)-porphyrin manganese(III) chloride (Mn(III)ClTCPP, 140 mg), 6-aminocaproic acid-p-nitroanilide·HCl (51.8 mg), triethylamine (0.042 cm³), and dicyclohexylcarbodiimide (DCC, 33 mg) was stirred at 0 °C for 2 h and stirred again at 25 °C for 20 h, and the solution was stored in a refrigerater for 2 h. Precipitated dicyclohexylurea was removed by filtration, and the solvent was evaporated to yield crude crystals which were purified by washing several times with 0.6 mol dm⁻³ HCl and H₂O. Anal. Found: C, 60.57; H, 4.53; N, 7.79%. Calcd for $C_{60}H_{51}N_7O_{14}MnCl$; C, 60.84; H, 4.34; N, 8.28%.

In regard to the anchored-type antibody catalyst (4) which is conveniently in situ prepared by mixing 3 and the monoclonal antibody, the complete inclusion of 3 by the antibody was confirmed from the decrease in the emission (340 nm) intensity of the tryptophan (Trp) residues in the antibody (Trp-35(V_L), 35(V_H), 148(C_L), and 148(C_H 1) in one of the F_{ab} region⁵⁾) by the anchoring of the complex 3; from the change in the fluorescence intensity of the Trp residues in the antibody by the formation of 4 through the energy transfer from the photo-excited Trp residues to 3, the average distance between the Trp residues and 3 was estimated to be 4.81 nm by the Förster equation. 6) Thus, the evaluated

distance supports that the position of the catalytically active Mn(III)ClTCPP portion in ${\bf 4}$ is located inside the F_{ab} resion of the antibody.

The rate of stereoselective dioxygenolyses of L- and D-1 (1.0 x 10^{-4} mol dm⁻³) in the presence of 3 (1.0 x 10^{-6} mol dm⁻³) and antibody (1.0 x 10^{-5} mol dm⁻³ for monoclonal and polyclonal IgG)⁷) in 10 vol% THF/H₂O (pH 8.0) under atmospheric O₂ at 25 °C were determined as pseudo-first-order rate constants; the reaction was monitored by the decrease of 1 with HPLC (JASCO Finepack SIL C₁₈, UV 280 nm, and eluent 40 vol% MeOH/H₂O with retention times of 15.9 min for 1 and 10.7 min for 2). The evaluated rate constants are listed in Table 1. The monoclonal IgG antibody exhibited

Table 1. Stereoselective dioxygenolysis of 1 by the anchored-type antibody $(4)^{a}$

Antibody	$10^6 k / s^{-1}$		$\mathbf{k^L}/\mathbf{k^D}$
	L	D	K /K
monoclonal IgG	8.88	4.44	1.98
polyclonal IgG	29.2	26.5	1.10
none (Mn(III)ClTCPP) ^{b)}	62.5	62.5	1.00

a) L (or D)-1 (1.0 x 10^{-4} mol dm⁻³), 3 (1.0 x 10^{-6} mol dm⁻³), and antibody (1.0 x 10^{-5} mol dm⁻³) in 10 vol% THF/H₂O (pH 8.0) under atmospheric O₂ at 25°C. b) Mn(III)ClTCPP (1.0 x 10^{-6} mol dm⁻³) in 30 vol% THF/H₂O.

substantial dioxygenolysis activity (turnover number of 14.6 for 5 h in L-1), but its catalytic activity was found lower as compared with that of the polyclonal IgG antibody (turnover number 40.9 for 5 h in L-1) or Mn(III)ClTCPP per se (turnover number 67.5 for 5 h in L-1). Since the present monoclonal antibody catalyst was not designed as a receptor of the enantiomeric 1 substrates, the antibody framework did not directly contribute the substrate incorporation so as to prevent the approach of 1 toward the active Mn(III)ClTCPP site from the bulk solution. However, stereoselective ability (defined by enantiomer rate ratio, $\mathbf{k}^{\mathrm{L}}/\mathbf{k}^{\mathrm{D}}$) of the monoclonal antibody was higher than that of the polyclonal one which involves the present monoclonal antibody in the extent of ca. 10%. In this sense, the polyclonal antibody catalyst is, as a matter of fact,

ineffective for the present stereoselective dioxygenolysis of 1 because it hardly takes the structure of the present anchored-type antibody.

Anyway, the catalytic and stereoselective ability of the anchoredtype monoclonal antibodies might be improved by the use of monoclonal antibodies supplied from such a hapten as L-tryptophan-coordinated manganese porphyrin complex, which is now under progress.

References

- A. Tramontano, K. D. Janda, and R. A. Lerner, Science, 234, 1566 (1986); S. J. Pollack, J. W. Jacobs, and P. G. Schultz, ibid., 234, 1570 (1986); T. Kitazume, J. T. Lin, T. Yamamoto, and T. Yamazaki, J. Am. Chem. Soc., 113, 8573 (1991).
- 2) B. L. Iverson and R. A. Lerner, Science, 243, 1184 (1989).
- A. G. Cochran and P. G. Schultz, J. Am. Chem. Soc., 112, 9414 (1990);
 E. Keinan, S. C. Sinha, A. Sinha-Bagchi, E. Benory, M. C. Ghozi, Z.
 Eshhar, and B. S. Green, Pure Appl. Chem., 62, 2013 (1990); A. Harada,
 K. Okamoto, and M. Kamachi, Chem. Lett., 1991, 953.
- 4) G. Kohler and C. Milstein, *Nature*, **256**, 495 (1975); E. Engvall, *Methods Enzymol.*, **70**, 419 (1980).
- 5) G. M. Edelman, B. A. Cunningham, W. Einar Gall, P. D. Gottlieb, U. Rutishauser, and M. J. Waxdal, *Proc. Natl. Acad. Sci. U. S. A.*, 63, 78 (1969); R. J. Poljak, L. M. Amzel, H. P. Avey, B. L. Chen, R. P. Phizackerley, and F. Saul, *ibid.*, 70, 3305 (1973); E. A. Padlan, *Quarterly Reviews of Biophysics*, 10, 35 (1977).
- 6) T. Förster, Ann. Phys. (Leipzig), 2, 55 (1948).
- 7) Protein molarity was determined by absorbance at 280 nm by using $E_{1~cm}^{~0.1\%}$ = 1.40 and a molecular weight of 150000 for IgG.

(Received September 21, 1992)